Catalytic DNA with phosphatase activity.
نویسندگان
چکیده
Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn(2+)-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase activity). The best deoxyribozyme decreases the half-life for phosphoserine hydrolysis from as high as >10(10) y to <1 h. The phosphatase activity also occurs with nonpeptidic substrates but with reduced efficiency, indicating a preference for phosphopeptides. The newly identified deoxyribozymes can function with multiple turnover using free peptide substrates, have activity in the presence of human cell lysate or BSA, and catalyze dephosphorylation of a larger protein substrate, suggesting broader application of DNA catalysts as artificial phosphatases.
منابع مشابه
An Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملAn Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملProtein phosphatases regulate DNA-dependent protein kinase activity.
DNA-dependent protein kinase (DNA-PK) is a complex of DNA-PK catalytic subunit (DNA-PKcs) and the DNA end-binding Ku70/Ku80 heterodimer. DNA-PK is required for DNA double strand break repair by the process of nonhomologous end joining. Nonhomologous end joining is a major mechanism for the repair of DNA double strand breaks in mammalian cells. As such, DNA-PK plays essential roles in the cellul...
متن کاملPolo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in...
متن کاملMelanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A.
Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 14 شماره
صفحات -
تاریخ انتشار 2013